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The standard result for the chemical potentialm of an ideal intrinsic semiconductor as calculated in
the canonical ensemble indicates thatm goes to the middle of the band gap as the temperatureT goes
to zero. However, the definition ofm implies thatm goes to the bottom of the conduction band as
T→0. The solution to this puzzle is that the Fermi–Dirac distribution function ceases to be accurate
for the thermal occupation probabilities when the temperature is so low that the number of electrons
in the conduction band is of order unity. The use of the correct occupation numbers results inm
going to the bottom of the conduction band asT→0. © 2004 American Association of Physics Teachers.
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I. INTRODUCTION

The ideal intrinsic semiconductor has proven to be useful
for teaching several important concepts that are needed for
the study of realistic semiconductors. These concepts include
valence and conduction bands, the band gap, thermal occu-
pation numbers, conductivity, and the chemical potentialm.
Except for the low temperature behavior of the chemical po-
tential, calculated in the canonical ensemble, these important
concepts are covered in a number of excellent textbooks.

The standard result for the chemical potential calculated in
the canonical ensemble suggests thatm goes to the middle of
the band gap as the temperatureT goes to zero. However, the
chemical potential actually goes to the bottom of the conduc-
tion band asT goes to zero.1 The reason that the standard
treatment cannot be used to find the correct limit is not ob-
vious and is somewhat surprising. Consequently, the study of
the temperature dependence of the chemical potential of the
ideal intrinsic semiconductor has much pedagogical value.

The principal purpose of this paper is to show that the
standard result form as given in textbooks~see, for example,
Refs. 2–11! cannot be used to obtain the correct behavior of
m asT→0; the correct form is given in Ref. 1. We will see
that one of the assumptions made in the standard treatment
breaks down asT→0. The nature of the incorrect assumption
reminds us of the importance of checking assumptions—the
incorrect assumption is seemingly so reasonable that it
would appear to be beyond question.

Specifically, the Fermi–Dirac distribution function is used
to calculate the thermal occupation numbers; careful analysis
shows that the Fermi–Dirac distribution function breaks
down for an ideal intrinsic semiconductor when the tempera-
ture is low enough that the number of electrons in the con-
duction band is of order unity.

II. STATEMENT OF THE PROBLEM AND THE
STANDARD TREATMENT

The objective is to calculate the temperature dependence
of the chemical potentialm of an ideal intrinsic semiconduc-
tor in the canonical ensemble. The definition ofm in the
canonical ensemble is

m~N,T,V!5F~N11,T,V!2F~N,T,V!, ~1!

where F(N,T,V) is the Helmholtz free energy forN par-
ticles in a volumeV in thermal contact with a heat bath at

temperatureT. The equation form is obtained in the canoni-
cal ensemble by equating the total number of electrons in the
conduction band with the total number of holes in the va-
lence band. The standard treatment leads to the following
expression form, first obtained by Wilson12 in 1931:

m5Ec2
1

2
Eg1

3

4
kT lnS mv

mc
D , ~2!

whereEc is the energy at the bottom of the conduction band,
Eg is the gap energy, andmv andmc are the effective masses
for the valence band and the conduction band, respectively.13

In the limit T→0, Eq. ~2! implies that m goes to the
middle of the band gap. However, the definition ofm leads to
its interpretation in theT→0 limit as the work required to
add one particle to the system, which would certainly seem
to beEc . We thus have an interesting quandary: doesm go to
the middle of the band gap or to the bottom of the conduc-
tion band? If the former, why is the work required to add one
more particle not equal toEc? If the latter, what is the reason
that Eq.~2! breaks down asT→0?

The details that lead to the standard expression form in
Eq. ~2! have been presented and discussed previously~see,
for example, Ref. 14!. We will focus here on the main reason
why Eq. ~2! breaks down asT→0.

III. THE INCORRECT ASSUMPTION

The following expression is readily obtained in the ca-
nonical ensemble:15

f i~N,T,V!512e[Ei2m(N,T,V)]/kTf i~N11,T,V!, ~3!

where f i(N,T,V) is the probability of a fermion~electron!
being in the one-electron eigenstateu i & when there areN
fermions in a volumeV at temperatureT, with Ei the energy
of the state u i &. If we assume thatf i(N,T,V)' f i(N
11,T,V), we obtain the Fermi–Dirac distribution function
for f i(N,T,V):

f i
FD~N,T,V!5~e[Ei2m(N,T,V)]/kT11!21. ~4!

The assumption thatf i(N,T,V)' f i(N11,T,V) seems to be
beyond question. Because the electron number density is of
order 1022 cm23, how could it possibly be that adding a
single electron would lead to anything but a miniscule
change in the occupation probability?
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The answer emerges upon considering theN-dependence
of the zero temperature limit ofm(N,T,V). Let Nvb denote
the number of electrons needed to completely fill the valence
band with no electrons in the conduction band atT50. For
N5Nvb21,Nvb22,..., the zero temperature limit of
m(N,T,V) will be near the top of the valence band. ForN
5Nvb11,Nvb12,..., the zero temperature limit of
m(N,T,V) will be near the bottom of the conduction band.
Thus, the zero temperature limit ofm(N,T,V) goes from
Ev , the energy at the top of the valence band, toEc , the
energy at the bottom of the conduction band, asN goes from
Nvb21 to Nvb11. The implication is that the occupation
probabilities, which depend sensitively on the value of the
chemical potential, especially at low temperatures, change
appreciably if a particle is added. The low temperature jump
in m occurs when the total number of particles isNvb , that is,
f i(Nvb21,T,V) and f i(Nvb ,T,V) differ appreciably asT
→0.

The proof of this last statement is as follows. TakeN
5Nvb21 in Eq.~3!. For all states in the conduction band, for
all T of interest, we havef i(Nvb21,T,V)!1. Thus, the exact
expression~3! gives, for all states in the conduction band,

f i~Nvb ,T,V!'e2[Ei2m(Nvb21,T,V)]/kT. ~5!

The Fermi–Dirac distribution function, Eq.~4!, however,
gives the following for all states in the conduction band:

f i
FD~Nvb ,T,V!'e2[Ei2m(Nvb ,T,V)]/kT. ~6!

We have already seen thatm(Nvb21,T,V) andm(Nvb ,T,V)
have drastically different values at low temperatures, which
implies that Eqs.~5! and~6! give drastically different values
for the occupation numbersf i . The consequence is that the
Fermi–Dirac distribution function, Eq.~4!, breaks down for
an ideal intrinsic semiconductor asT→0.

Equation~3! can be used to obtain the asymptotic form for
the chemical potentialm(Nvb ,T,V) in the canonical en-
semble as T→0. Consider the occupation numbers
f c(N,V,T) of the two states at the bottom of the conduction
band, with energyEc . We havef c(Nvb ,V,T)→0 asT→0
for N5Nvb , and f c(Nvb11,V,T)→1/2 as T→0 for N
5Nvb11. If we use these results in Eq.~3!, we find

m~Nvb ,T,V!→Ec2kT ln 2, ~7!

as T→0. Note that Eq.~7! holds for temperatures low
enough thatkT is much smaller than the spacing of the en-
ergy levels at the bottom of the conduction band. For tem-
peratures higher than this spacing, but still low in that the
number of electrons in the conduction band is of order unity,
we need to use Eq.~3! to obtain the temperature dependence
of m. A full treatment gives the correct temperature depen-
dence of the chemical potential in the canonical ensemble.1

At temperatures where the number of electrons in the con-
duction band is large, the standard result, Eq.~2!, is recov-
ered. As the temperature drops low enough so that the num-
ber of electrons in the conduction band is not large, a new
expression~given in the following! replaces Eq.~2!. This
equation form is

m~Nvb ,T,V!5Ec2
1

2
Eg1kT lnF S mv

mc
D 3/4

a~T,V!G
2kTNi~T,V!@a~T,V!1a21~T,V!22#,

~8!

where

Ni~T,V!5
1

4
VS 2kT

p\2D 3/2

~mvmc!
3/4e2Eg/2kT, ~9!

and

a~T,V!5
11A114Ni

2~T,V!

2Ni~T,V!
, ~10!

with mc and mv the effective masses at the bottom of the
conduction band and the top of the valence band.1 Figure 1
showsm(Nvb ,T,V) as a function ofT for various values of
V.

The weak dependence ofm on the volumeV at low tem-
peratures can be understood as follows. From Eqs.~8! to
~10!, we see that the chemical potential begins to increase
toward the conduction band whenNi(T,V)!1, from which
we find thatV appears in the argument of the natural loga-
rithm.

An interesting aspect of the logarithmic dependence ofm
on V is the following. The statistically important quantity
that determines the temperature,T0 , at which m starts to
increase toward the conduction band, is the total number of
electrons in the conduction band,Ncb. Consider increasingV
andN without changingN/V and takeV andN to be arbi-
trarily large but fixed. For any such value ofV andN, there
is a temperatureT0 at which Ncb is of order unity. ForT0

.T→0, m→Ec . T0 decreases with increasingV andN, but
very slowly. Even for a volume of the order of 1080 m3 as in
Fig. 1~d!, T0 is still about 5 K.

The opposite extreme is to takeT arbitrarily small but
fixed, and then takeV→` with N/V fixed. In this case Eq.
~2! is recovered. Note that this recovery of Eq.~2! requires
an enormous volumeV. From Fig. 1 we see that forT

Fig. 1. The chemical potentialm of an ideal intrinsic semiconductor as a
function of the temperatureT for different volumesV: ~a! 10215 m3; ~b!
1026 m3; ~c! 1012 m3; ~d! 1080 m3. m50 corresponds to the middle of the
band gap andm51 is at the bottom of the conduction band. The effective
masses have been chosen so that (mv /mc)

3/452 andmvmc5m2.
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55 K, V must be greater than 1080 m3, and for lower tem-
peratures,V must be larger still. Further discussion of the
volume dependence for largeV and smallT and related
questions are given in Ref. 1.

IV. PEDAGOGICAL VALUE

Instructors might wish to use the material presented here
to show students how important it is that assumptions be
checked. There are a number of related problems, some of
which can be given as problems for students.16–18 Some ex-
amples are as follows.

The most straightforward extension is to calculate the low
temperature behavior of the chemical potential of the ideal
intrinsic semiconductor with N5Nvb21,Nvb22,...; N
5Nvb11,Nvb12,... .

Another challenging and interesting problem is to take
into account the presence ofNd donor andNa acceptor im-
purities. One can compare the chemical potential calculated
using the Fermi–Dirac distribution function with the exact
method outlined in this paper. One finds that the two differ
negligibly wheneverNd@1, Na@1, anduNd2Nau@1, which
makes sense, and explains why the incorrect result was not
noticed for such a long time. The result is that there is, as
expected, a noticeable difference between the Fermi–Dirac
distribution functionm and the exactm whenuNd2Nau is of
order unity.

An instructive example for students is the caseNd.Na

50. Using the Fermi–Dirac distribution function givesm
→(Ec1Ed)/2 asT→0, whereas the correct treatment gives
m→Ed as T→0 (Ed is the energy level of donors!. This
result can be extended toNd andNa of order unity: one finds
that the Fermi–Dirac distribution function and the exact
treatment give similar, but distinguishable results.

It is important to note that calculations can be solved in
the canonical or the grand canonical ensemble. The same
answers to the same physical questions can be found in ei-
ther ensemble. For example,m as given by Eq.~1! can be
obtained by working in either ensemble, as was shown in
Ref. 1.

V. DISCUSSION

A possible but unsatisfactory response to the low tempera-
ture behavior of the chemical potential of an ideal intrinsic
semiconductor is to avoid the question by introducing anew
quantity which we denote byf. The quantityf is taken to be
the average of the chemical potential for adding one particle
and the chemical potential for adding one hole in the canoni-

cal ensemble. Then using reasoning similar to that of the
standard treatment ofm, it is found that asT→0, f goes to
the middle of the band gap. However, this response is inad-
equate. Introducing a new quantity begs the question ad-
dressed in this paper: theT→0 limit of f does not explain
what theT→0 limit of m is. The result thatf goes to the
middle of the gap would seem to suggest thatm goes to the
bottom of the conduction band, and that the chemical poten-
tial for adding one hole goes to the top of the valence band.
However, the introduction off does not explain whym
→Ec asT→0, and does not give the low temperature behav-
ior of m.
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