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The standard result for the chemical potentiadf an ideal intrinsic semiconductor as calculated in

the canonical ensemble indicates thajoes to the middle of the band gap as the temperatgees

to zero. However, the definition qf implies thatu goes to the bottom of the conduction band as
T—0. The solution to this puzzle is that the Fermi—Dirac distribution function ceases to be accurate
for the thermal occupation probabilities when the temperature is so low that the number of electrons
in the conduction band is of order unity. The use of the correct occupation numbers reswlts in
going to the bottom of the conduction bandTas:0. © 2004 American Association of Physics Teachers.
[DOI: 10.1119/1.1629090

[. INTRODUCTION temperaturd. The equation fog is obtained in the canoni-
al ensemble by equating the total number of electrons in the
onduction band with the total number of holes in the va-
nce band. The standard treatment leads to the following
§2(pression fon, first obtained by Wilsolf in 1931:

The ideal intrinsic semiconductor has proven to be usefu
for teaching several important concepts that are needed f
the study of realistic semiconductors. These concepts inclu
valence and conduction bands, the band gap, thermal occ
pation numbers, conductivity, and the chemical potentiial 1 3 m,
Except for the low temperature behavior of the chemical po- pn=Ec— §Eg+ Zlen H)
tential, calculated in the canonical ensemble, these important
concepts are covered in a number of excellent textbooks. WhereE. is the energy at the bottom of the conduction band,

The standard result for the chemical potential calculated irEg is the gap energy, and, andm, are the effective masses
the canonical ensemble suggests thafes to the middle of for the valence band and the conduction band, respectively.
the band gap as the temperatiirgoes to zero. However, the  In the limit T—0, Eq. (2) implies thatx goes to the
chemical potential actually goes to the bottom of the conducmmiddle of the band gap. However, the definitionwofeads to
tion band asT goes to zerd.The reason that the standard its interpretation in thef—0 limit as the work required to
treatment cannot be used to find the correct limit is not ob-add one particle to the system, which would certainly seem
vious and is somewhat surprising. Consequently, the study ab beE.. We thus have an interesting quandary: daep to
the temperature dependence of the chemical potential of thtde middle of the band gap or to the bottom of the conduc-
ideal intrinsic semiconductor has much pedagogical value. tion band? If the former, why is the work required to add one

The principal purpose of this paper is to show that themore particle not equal tB,? If the latter, what is the reason
standard result fop. as given in textbookésee, for example,  that Eq.(2) breaks down ag—0?

Refs. 2—1] cannot be used to obtain the correct behavior of The details that lead to the standard expressionufon

y aST—>O; the correct form is given in Ref. 1. We will see Eq (2) have been presented and discussed previd&dg]
that one of the assumptions made in the standard treatmefr example, Ref. 14 We will focus here on the main reason
breaks down ag— 0. The nature of the incorrect assumption why Eq. (2) breaks down a3 —0.

reminds us of the importance of checking assumptions—the
incorrect assumption is seemingly so reasonable that i
would appear to be beyond question. . THE INCORRECT ASSUMPTION

Specifically, the Fermi—Dirac distribution function is used The fo||owing expression is read”y obtained in the ca-
to calculate the thermal occupation numbers; careful analysigonical ensembl&®

shows that _the I_:ermi—_Dirac_distribution function breaks [ a(NTA)KT

down for an ideal intrinsic semiconductor when the tempera- fi(N,T,V)=1—e="# fi(N+1T,V), 3)
ture is low enough that the number of electrons in the CoNwhere f;(N,T,V) is the probability of a fermior(electron
duction band is of order unity. being in the one-electron eigenstdt® when there areN
fermions in a volume/ at temperaturd, with E; the energy
of the stateli). If we assume thatf;(N,T,V)~f;(N
+1,T,V), we obtain the Fermi—Dirac distribution function

The objective is to calculate the temperature dependender fi(N,T,V):

@

C

[I. STATEMENT OF THE PROBLEM AND THE
STANDARD TREATMENT

of the chemical potentighk of an ideal intrinsic semiconduc- FD — (alEj— (N, TV)]/KT ~1

tor in the canonical ensemble. The definition @fin the PN T.V)=(e™ D7 @

canonical ensemble is The assumption th&t(N,T,V)~f;(N+1,T,V) seems to be
w(N,TV)=F(N+1T,V)—F(N,T.V), 1) beyond question. Because the electron number density is of

_ order 13% cm 3, how could it possibly be that adding a
where F(N,T,V) is the Helmholtz free energy foN par-  single electron would lead to anything but a miniscule
ticles in a volumeV in thermal contact with a heat bath at change in the occupation probability?
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The answer emerges upon considering khdependence 1.0 ey
of the zero temperature limit gi(N,T,V). Let N, denote A: v=10""m® 3
the number of electrons needed to completely fill the valence 0.8 B: v=10"%m® 3
band with no electrons in the conduction bandrat0. For c: v=10'%m®
N=N,,—1Ny,p—2,..., the zero temperature limit of 0.65 D: v=10%m® 3
(N, T,V) will be near the top of the valence band. Rér 3 3
=Nyt 1Nypt2,..., the zero temperature limit of H £ ]
(N, T,V) will be near the bottom of the conduction band. O.4§— E
Thus, the zero temperature limit @f(N,T,V) goes from g a
E,, the energy at the top of the valence bandEtg the 0.2¢ E
energy at the bottom of the conduction bandNagoes from p € E
Ny,—1 to Ny,+1. The implication is that the occupation 0.0 koo T T
probabilities, which depend sensitively on the value of the 0 20 40 60 80
chemic.al po;ential, .espgcially at low temperatures, change T(K)
appreciably if a particle is added. The low temperature jump
in w occurs when the total number of particledNg,, thatis,  Fig. 1. The chemical potentigt of an ideal intrinsic semiconductor as a

fi(Nyp—1,T,V) and f;(Ny,,T,V) differ appreciably asT function of the temperatur& for different volumesV: (&) 107 ° m?; (b)
-0 1078 m%; (c) 10 m®; (d) 10%° m®. =0 corresponds to the middle of the

. . band gap angk=1 is at the bottom of the conduction band. The effective
The proof of this last statement is as follows. Take  3sses have been chosen so thag/n,)¥=2 andm,m,=m?.

=N,p—1 in Eqg.(3). For all states in the conduction band, for
all T of interest, we havé;(N,,—1,T,V)<<1. Thus, the exact
expression(3) gives, for all states in the conduction band,

1
Nyo, T.V)=E.— 5 E;+kTIn
(N, T,V) e [N LTVVKT, (5) Hlhe TZET2 5
—KTN(T,V)[a(T,V)+a X(T,V)—-2],
The Fermi—Dirac distribution function, Eq4), however, ®)
gives the following for all states in the conduction band:

m 3/4
(R o)

C

where

fFO(Nyp, T,V) ~ e~ [Ei = #(Nwp TVIVKT 6 1 312
i (N, T,V) (6) Ni(TvV)=ZV<W) (m, mg)¥e ™ Eg2T 9)

We have already seen tha{N,,—1,T,V) and u(Ny,T,V)
have drastically different values at low temperatures, which

implies that Egs(5) and(6) give drastically different values 1+ \/1+4Ni2(T,V)

for the occupation numberfs. The consequence is that the ~— @(T,V)= NTV) (10)
Fermi—Dirac distribution function, Ed4), breaks down for n

an ideal intrinsic semiconductor 3s—0. with m; and m, the effective masses at the bottom of the

Equation(3) can be used to obtain the asymptotic form for conduction band and the top of the valence baRigure 1
the chemical potentiaju(Ny,,T,V) in the canonical en- Showsu(Ny,,T,V) as a function off for various values of
semble as T—0. Consider the occupation numbers V-
f«(N,V,T) of the two states at the bottom of the conduction The weak dependence pfon the volumeV at low tem-

band, with energyE.. We havef.(N,,,V,T)—0 asT—0  Peratures can be understood as follows. From Egsto
for N=N,,, and fo(N,,+1V,T)—1/2 as T—0 for N (10), we see that the chemical potential begins to increase
VD C V 1V

toward the conduction band whé(T,V)<1, from which
we find thatV appears in the argument of the natural loga-
rithm.

An interesting aspect of the logarithmic dependence: of
on V is the following. The statistically important quantity
as T—0. Note that Eq.(7) holds for temperatures low that determines the temperatufg,, at which u starts to
enough thakT is much smaller than the spacing of the en-increase toward the conduction band, is the total number of
ergy levels at the bottom of the conduction band. For temelectrons in the conduction barid,,. Consider increasiny
peratures higher than this spacing, but still low in that theand N without changing\N/V and takeV andN to be arbi-
number of electrons in the conduction band is of order U”itytrarily large but fixed. For any such value ¥fandN, there

\é\?e:e,g(?‘utltl) tL:thlrEn(fr:ttgi\?g;amethc?otrfg:??éﬁgfrgﬁ?gn dd:;:r?is a temperaturd, at which N, is of order unity. ForT,
dence of the chemical potential in the canonical ensemble | 9 #—Ec. To decreases with |ncreasmgand3N, but
At temperatures where the number of electrons in the conte"Y Slowly. Even for a volume of the order ofam’ as in

duction band is large, the standard result, B, is recov-  Fig: 1(d), To is still about 5 K. o

ered. As the temperature drops low enough so that the num- The opposite extreme is to take arbitrarily small but
ber of electrons in the conduction band is not large, a nevixed, and then tak& —co with N/V fixed. In this case Eq.
expression(given in the following replaces Eq(2). This  (2) is recovered. Note that this recovery of Eg) requires

equation foru is an enormous volumé&/. From Fig. 1 we see that fof

=N+ 1. If we use these results in E), we find

M#(Nyp, T,V)—E.—KkTIn2, (7)
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=5K, V must be greater than 40mS, and for lower tem- cal ensemble. Then using reasoning similar to that of the
peraturesV must be larger still. Further discussion of the Standard treatment qf, it is found that asT—0, ¢ goes to
volume dependence for largé and smallT and related the middle of the band gap. However, this response is inad-

questions are given in Ref. 1. equate. Introducing a new quantity begs the question ad-
dressed in this paper: the—0 limit of ¢ does not explain
IV. PEDAGOGICAL VALUE what theT—0 limit of w is. The result that goes to the

) ) . middle of the gap would seem to suggest thagoes to the
Instructors might wish to use the material presented hergottom of the conduction band, and that the chemical poten-
to show students how important it is that assumptions beja| for adding one hole goes to the top of the valence band.
checked. There are a number of related problems, some @fowever, the introduction ofp does not explain whyu

; ; 8
which can be given as problems for studefis Some ex- —E,asT—0, and does not give the low temperature behav-
amples are as follows. ior of .

The most straightforward extension is to calculate the low
temperature behavior of the chemical potential of the ideal
intrinsic semiconductor withN=N,,—1N,,—2,...; N ACKNOWLEDGMENTS
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